Posts Tagged ‘obs’

h1

Copier la structure d’un data set et se séparer des données

octobre 16, 2008

Sous SAS, comment récupérer les caractéristiques d’un data set dans un autre data set sans les données et ainsi s’épargner un travail occasionnel mais qui peut vite devenir fastidieux ? Le nom des variables, leur position dans le data set et leurs autres attributs (type, longueur, format, informat) forme la structure d’un data set. Pour les récupérer, deux notations sont offertes : l’option OBS= dans une étape data et le mot LIKE dans une procédure SQL.

1. Créer le data set servant d’exemple

Pour illustrer les deux notations, nous partirons d’un data set nommé CLASS contenant une ligne d’observations et trois variables :

  • le nom de l’élève (NAME),
  • la date de début du cursus (SDT pour starting date) et
  • la date de fin du cursus (EDT pour ending date).

data class;
attrib name length=$15 label=‘Nom’
sdt informat=date9. format=date9. label=‘Starting Date’
edt informat=date9. format=date9. label=‘Ending Date’;
input name $ sdt edt;
datalines;
Charline 06OCT2006 15JUN2007
;
run;

Un PROC CONTENTS résumera les attributs des variables de la manière suivante :

proc contents data=class;
run;

# Variable Type Len Pos Format Informat Label

3 edt Num 8 8 DATE9. DATE9. Ending Date
1 name Char 15 16 Nom
2 sdt Num 8 0 DATE9. DATE9. Starting Date

1. Créer un data set vide

Dans cette première partie, un data set SQL_SOLUTION et ETAPE_DATA sont créés. Les deux ont la même structure

La procédure SQL : Au lieu de désigner toutes les variables à garder après un AS SELECT, on passe directement au data set de référence en l’introduisant avec le mot LIKE.

proc sql;
create table sql_solution like class;
quit;

L’étape data : L’option data set OBS= sur le fichier d’entrée précise qu’aucune observation ne sera lue. Seul le ‘header’ du data set contenant les caractéristiques sont lues par SAS et sauvegardées dans le data set de sortie ETAPE_DATA.

data etape_data;
set class (obs=0);
run;

SAS ira un peu plus vite avec une instruction STOP.

data etape_data;
set class;
stop;
run;

3. Ajouter des observations au data set vide

Une fois le data set copié sans les observations deux lignes sont ajoutées. La première désigne Jean-Pierre qui a début en janvier 2006. Christophe est nommé en second. Il a début le 7 octobre 2005 et terminé le 18 juin 2007.

La procédure SQL : Dans la PROC SQL, je vous propose d’ajouter les observations manuellement grâce à l’instruction INSERT INTO.

proc sql;
create table sql_solution like class;
insert into sql_solution
set name=‘Jean-Pierre’, sdt=’10JAN2006′d
set name=‘Christophe’, sdt=’07OCT2005′d, edt=’18JUN2007′d;
quit;

L’étape data : Dans un data step, les nouvelles observations sont sauvegardées dans un autre data set et sont ajoutées au moyen de l’instruction SET.

data add;
name=‘Jean-Pierre’;
sdt=’10JAN2006′d;
output;
name=‘Christophe’;
sdt=’07OCT2005′d;
edt=’18JUN2007′d;
output;
run;

data etape_data;
set class (obs=0)
add;
run;

Note : Dans ce cas, il faut que le data set contenant la structure apparaissent en premier. SAS sauvegarde toujours la première variable qu’il rencontre avec ses attributs. Proposer une autre variable du même nom avec des attributs différents ensuite n’alternera pas celles sauvegardées en premier.

h1

Répéter une action sur plusieurs variables avec le langage macro

août 13, 2008

Sous SAS, deux possibilités sont envisageables pour répéter une action sur plusieurs variables. Dans le cas d’un data step, la syntaxe de l’ARRAY est tout à fait appropriée. Dans d’autres cas, le langage macro peut s’avérer plus pertinent. Voici donc une présentation de l’approche via le langage macro.

1. L’exemple

Pour illustrer le propos, le programme aura pour but de définir un PROC REPORT contenant toutes les variables du data set SASHELP.CLASS. Si on connaît le nom des variables, la syntaxe se résume de la manière suivante.

proc report data=sashelp.class;
   columns name age sex weight height;
   define name   / display;
   define age    / display;
   define sex    / display;
   define weight / display;
   define height / display;
run;

Mais si on ne connaît pas le nom des variables par avance, il faut automatiser la tâche.

2. Remplacer le nom des variables par des macros variables

Dans l’exemple suivant, le nom de chaque variable est sauvegardé dans une macro variable. Ces macros variables ont une structure particulière :

un préfixe commun + un nombre

%let class1 = name;
%let class2 = age;
%let class3 = sex;
%let class4 = weight;
%let class5 = height;

proc report data=sashelp.class;
   columns name age sex weight height;
   define &class1. / display;
   define &class2. / display;
   define &class3. / display;
   define &class4. / display;
   define &class5. / display;
run;

3. Répéter l’instruction DEFINE grâce à une boucle

Grâce à cette structure particulière, une boucle peut être envisagée. L’instruction DEFINE est alors répétée autant de fois qu’il y a de variables. La boucle est définie par une macro variable « I » qui prend des valeurs allant de 1 à 5. La partie nombre de la macro variable est donc remplacée par la valeur de la macro variable « I ».

NOTE : Pour résoudre la macro variable lors de la première boucle, SAS effectue deux lectures. A la première lecture, les deux perluètes (ampersand) && se transforment en un seul ; &i. se transforme en 1. On a donc &CLASS1. A la deuxième lecture, SAS résout la macro variable &CLASS1. comme précédemment.

%macro test;
   proc report data=sashelp.class;
   columns name age sex weight height;
   %do i=1 %to 5
      define &&class&i. / display;
   %end;
   run;
%mend test;
%test;

4. Créer les macros variables de manière automatique

Pour créer les macros variables automatiquement, il faut agir en deux étapes.

  1. Enregistrer chacune des noms de variables du data set choisi dans PROC REPORT (SASHELP.CLASS) dans un nouveau data set (LST_VAR) et plus particulière dans une variable (NAME).
  2. Associer un numéro à chaque nom de variable (compteur) et convertir l’information en macro variable (CALL SYMPUT).

proc sql;
   create table lst_var as
      select name
      from dictionary.columns
      where upcase(libname)=‘SASHELP’ and
            upcase(memname)=‘CLASS’;
quit;

data _null_;
   set lst_var;
   cnt+1;
   call symput (cats(‘CLASS’,put(cnt,best.)),name);
run;

5. Compter le nombre de variables de manière automatique

Si le nombre de variable dans le data set n’est pas connu à l’avance, il faut le retrouver. Cette information est ensuite sauvegardée dans une macro variable, disons MAX_VAR, et remplacera notre nombre 5. L’article « 3 méthodes pour construire des macro variables sans macro » vous donnera plus de précisions concernant la création d’une macro variable.

Obtenir rapidement le nombre de variables dans un data set : Un moyen pour trouver le nombre de variables est de faire appel au dictionnaire de SAS intitulé TABLES.

proc sql noprint;
   select nvar into : max_var
   from dictionary.tables
   where upcase(libname)=‘SASHELP’ and
         upcase(memname)=‘CLASS’;
quit;

Plus de flexibilité sur la liste des variables concernées : Un autre moyen pour compter le nombre de variables est d’agir en deux étapes.

  • Enregistrer dans un variable d’un nouveau data set chacune des noms de variables de SASHELP.CLASS.
  • Compter le nombre d’observations dans ce data set. Vous pouvez vous reporter à l’article « Combien d’observations dans mon data set » pour plus de précisions sur les différentes alternatives.

Dans notre exemple, il s’agit de créer le data set LST_VAR pour la première étape. Le code de la section 4 est tout à fait suffisant pour cela. Ensuite, CALL SYMPUTX peut servir à sauvegarder l’information dans une macro variable.

data _null_ ;
   call symputx(‘max_var’,_N_-1);
   set lst_var;
run;

Pourquoi vous ai-je proposé cette alternative ?  Ici, toutes les variables sont sélectionnées. Mais si seulement quelques une sont choisies, seule la seconde alternative marche. Voici quelques sous-sélections possibles.

  • Sélectionner toutes les variables numériques,
  • Sélectionner toutes les variables finissant pas _X,
  • etc.

En résumé : En résumé, le code se décompose en 2 étapes : créer les macros variables et utiliser ces macros variables pour définir une boucle.

*1. Créer les macros variables CLASS1 à CLASS5, MAX_VAR.;

*1.1 Créer le data set LST_VAR servant de fichier de référence.;

proc sql;
   create table lst_var as
      select name
      from dictionary.columns
      where upcase(libname)=‘SASHELP’ and
            upcase(memname)=‘CLASS’;
quit;

*1.2 Créer les macro variables CLASS1-CLASS5 en se basant sur le data set LST_VAR créé précédemment.;

data _null_;
   set lst_var;
   cnt+1;
   call symput (cats(‘CLASS’,put(cnt,best.)),name);
run;

*1.3 Créer la macro variable VAR_MAX en se basant sur le data set LST_VAR créé précédemment.;

data _null_ ;
   call symputx(‘max_var’,_N_-1);
   set lst_var;
run;

*2. Reporting : appeler les différentes macro variables pour créer la boucle autour de l’instruction DEFINE.;

%macro test;
proc report data=sashelp.class;
   columns name age sex weight height;
   %do i=1 %to &max_var.;
      define &&class&i. / display;
   %end;
run;
%mend test;
%test;

h1

Combien d’observations dans mon data set ?

avril 14, 2008

Savoir trouver le nombre d’observations dans un data set SAS : tel est le sujet d’aujourd’hui. Connaître le nombre d’observations dans un jeu de données présente plusieurs avantages. En voici deux :

  • Définir une condition pour qu’un code soit exécuté.
  • Définir une boucle pour exécuter un code autant de fois qu’il y a d’observations dans le data set d’origine.

Dans les deux cas, on choisi ici de sauvegarder ce nombre dans une macro variable. Quelles sont les méthodes à disposition pour trouver ce nombre ? Je vous en propose d’en détailler six. Celles-ci fonctionnent également lorsque le data set est vide d’observations.

Exemples illustrés avec le data set ORIG : pour illustrer les différentes méthodes, j’utilise un jeu de données nommé ORIG ne contenant pas d’observations.

data orig;
x=1;

*if x=1 then output;
if x=1 then delete;
run;

L’instruction %PUT permet de voir la valeur de mes macro variables dans la LOG.

1. La fonction COUNT dans PROC SQL : la procédure SQL et sa fonction COUNT permettent de retrouver le nombre total d’observations dans le data set lu, si on n’utilise pas de GROUP BY. L’étoile signifie « TOUTES LES OBSERVATIONS », indépendamment de la variable. Si le nombre d’observations est stocké dans une variable, la valeur s’affiche pour chaque observation. Comme cette valeur est la même pour toutes les observations, on peut n’en afficher qu’une seule via DISTINCT. On peut sauvegarder cette information dans une macro variable via INTO:. Si le DISTINCT n’est pas utilisé, seule la première valeur sera sauvegardé dans la macro variable. DISTINCT est donc optionnel dans ce cas précis.

proc sql noprint;
select distinct count(*) into: methode1
from orig;
quit;

%put METHOD 1 = &methode1. ;


2. SQLOBS, une macro variable automatique à utiliser avec précaution : lorsqu’un data set est créé avec une procédure SQL, on peut, juste après, retrouver l’information avec la macro variable automatique &SQLOBS. Il faut bien faire attention de ne pas inclure d’autres data sets entre temps, lors d’une mise à jour par exemple. SQLOBS récupère le nombre d’observations du dernier jeu de données quelque soit son nom.

proc sql ;
create table methode2 as
select *
from orig;
quit;

%put METHODE 2 = &sqlobs. ;

3. Les métadonnées des dictionnaires SAS : le dictionnaire TABLES liste tous les data sets de toutes les bibliothèques et des informations supplémentaires les caractérisant. Ainsi la variable NOBS contient le nombre d’observations dans le data set. Ici on choisi INTO: pour sauvegarder ce nombre dans une macro variable.

proc sql noprint;
select nobs into: methode3
from dictionary.tables
where upcase(libname)=’WORK’ and
upcase(memname)=’ORIG’;
quit;

%put METHODE 3 = &methode3. ;

4. ATTRN comme « SAS Component Language » ou SCL : le SCL nommé ATTRN permet d’accéder au nombre d’observations. Pour cela, le nom du data set en question et le mot clé NOBS sont données. Ce SCL est accessible via %SYSFUNC. Pour lire le data set et extraire cette information, il faut au préalable, l’ouvrir et ensuite le fermer pour éviter des bugs, via les SCL OPEN et CLOSE. On réfère donc au data set via la macro variable DSID ouvrant le data set.

%let dsid     = %sysfunc(open(work.orig,in));
%let methode4 = %sysfunc(attrn(&dsid,nobs));
%if &dsid. > 0 %then %let rc = %sysfunc(close(&dsid));

%put METHODE 4 = &methode4. ;

5. La variable automatique _N_ : dans un data step, une variable nommée _N_ est créée automatique. Elle contient le nombre total d’itérations effectuées par SAS. Ainsi, si aucune donnée n’est lue, _N_=1. Une fois la lecture d’une observation faite par exemple, SAS revient juste après l’instruction DATA et _N_ est incrémenté de 1. Le nombre d’observations dans le data set est donc _N_-1. Ce nombre est sauvegardé ici dans une macro variable appelée METHODE5 créée via une instruction CALL SYMPUTX.

data_null_;
call symputx(‘methode5’,_N_-1);
set orig;
run;

%put METHODE 5 = &methode5. ;

6.  L’option NOBS de l’instruction SET : en précisant un nom après l’option NOBS= de l’instruction SET, la valeur de NOBS est sauvegardée dans une variable. Ici, elle s’appelle METHODE6. L’instruction CALL SYMPUTX permet de sauvegarder cette valeur dans une macro variable. La manière dont SAS traite le code est très importante ici.  Les explications d’Alain vous sont données plus bas.

data _null_;
if 0 then set orig nobs=methode6;
call symputx(‘methode6’,methode6);
stop;
run;

Le « IF 0 » est une instruction toujours fausse, donc l’exécution de l’instruction
conditionnée ne sera jamais réalisée. La récupération du nombre d’observations
depuis le dictionnaire du data set se fait au moment de la compilation par le SAS DATA
COMPILER, qui stocke dans une variable qui est forcément temporaire citée avec
l’option « NOBS= ».

L’instruction STOP ne permet pas d’écourter le temps de lecture des données car il
n’y pas d’exécution de lecture. Alors que se passe-t-il ?

L’étape DATA étant une boucle automatique dès qu’une instruction de lecture (Set ,
Merge, Modify, Update, …) de data set est détectée par le Superviseur SAS et par
compilateur de l’étape DATA , l’exécution de la boucle est automatique à cause de la
détection de l’instruction « SET » et SAS va vérifier si le test
induit par l’instruction « IF 0 » (comprendre if 0 =1) n’est pas devenu vrai !
D’où la nécessité de poser l’instruction SAS « STOP », pour éviter la boucle de
l’étape DATA.

 

(SUPERVISEUR SAS : Agent pivot qui distribue le code soumis par PARSING, soit au
DATASTEP COMPILER, PROCEDURE PARSER ou au Compilateur MACRO)