Posts Tagged ‘Data Step’

h1

Une formation gratuite d’introduction à SAS en deux clics

août 20, 2016

Bonjour,

La plateforme de formation en ligne : programmeur-pro.com vient de bénéficier d’un petit lifting.

Elle contient la formation gratuite : « Introduction à SAS pour vrai débutant « .

Introduction à SAS pour vrai débutant, le descriptif:

Ce programme s’adresse aux vrais débutants en langage SAS. Vous devez travailler en collaboration avec des programmeurs SAS, faire tourner des programmes existants ou naviguer dans une table SAS, ce programme d’introduction est fait pour vous.

Ici, on vous donne les outils de base pour gagner en autonomie dans votre travail, acquérir une meilleure compréhension des contraintes de la programmation et acquérir le vocabulaire pour dialoguer avec des programmeurs.

Ce programme est composé de 7 unités.

Pour créer un compte, cliquez sur S’inscrire. Confirmez ensuite votre inscription en cliquant sur le mail que vous recevrez.

Si vous pensez que dans votre entourage d’autres personnes pourraient bénéficier de ce programme, alors partagez le lien : programmeur-pro.com

A très bientôt sur la plateforme.

Véronique

h1

Protégé : Avez-vous pensé à lire votre log de manière automatique

septembre 12, 2010

Cet article est protégé par un mot de passe. Pour le lire, veuillez saisir votre mot de passe ci-dessous :

h1

Deux manières de créer un data set vide

juillet 2, 2009

Dans un précédent article Copier la structure d’un data set et se séparer des données, nous avons vu comment récupérer la structure d’une table (data set) de référence, c’est-à-dire copier les caractéristiques des variables sans les données. Ici, vous verrez comment créer un data set, appelé EMPTY, sans données et sans se baser sur un data set de référence.

L’intérêt est de souvent de pouvoir ensuite empiler des data sets ayant des longueurs de variables. En effet la longueur d’une variable rencontrée dans le premier data set sera la longueur de référence. Il ne faut pas qu’elle soit plus petite que celle du data set suivant. Autrement le texte des observations d’après est coupé (truncated).

1. Avec une étape data

Au choix, vous avez l’instruction ATTRIB ou les différentes instructions LABEL, LENGTH, FORMAT, INFORMAT pour créer les variables du data set.

data empty;
attrib var_text   label=‘Var. caractère, longueur 20’ length=$20
var_num_dt label=‘Var. numérique, longueur 8’ format=date9.;
stop;
run;

Dans la log, SAS précisera qu’aucune valeur n’a été donné aux variables VAR_TEXT et VAR_NUM_DT.

NOTE: Variable var_text is uninitialized.
NOTE: Variable var_num_dt is uninitialized.

2. Créer un data set vide avec la procédure SQL

La procédure SQL

proc sql;
create table empty
(
var_text char(20) label=‘Var. caractère, longueur 20’ ,
var_num_dt num label=‘Var. numérique, longueur 8’ format=date9.
);
quit;

3. Voir le résultat

J’ai choisi d’ajouter l’option VARNUM à la procédure PROC CONTENTS pour afficher les données dans l’ordre

proc contents data=empty varnum;
run;

La variable VAR_TEXT apparaît en premier. Il s’agit d’une variable alphanumérique de longueur 20 sans format et ayant pour libellé : Var. caractère, longueur 20.

La seconde variable VAR_NUM_DT est numérique, de longueur 8. Le format DATE9 est appliqué dessus de manière permanente. Le libellé de cette variable est : Var. numérique, longueur 8.

The CONTENTS Procedure

Variables in Creation Order

# Variable   Type   Len Format Label

1 var_text   Char   20         Var. caractère, longueur 20
2 var_num_dt Num     8  DATE9. Var. numérique, longueur 8

Lectures complémentaires

h1

Mettre à jour un data set à partir d’un autre

octobre 30, 2008

Si vous avez déjà utilisé un peu SAS, vous connaissez probablement les instructions SET et MERGE. Aujourd’hui, voici un article sur l’instruction UPDATE pour mettre à jour un data set. Cette instruction de l’étape DATA doit être utilisée en gardant en tête deux notions importantes expliquées ici.

Pour réviser ou découvrir les instructions SET et MERGE, reportez-vous aux articles suivants :

1. Un data set de base et un autre contenant des informations nouvelles

Dans notre exemple nous avons deux data sets YEAR_2007_FRST et YEAR_2007_EXTRA.

Le premier data set YEAR_2007_FRST est le data set à mettre à jour : il contient

  • 4 observations et
  • 3 variables numériques : MONTH (month pour mois), CRIT (criteria pour critère), VAL (value pour valeur).
data year_2007_frst;
   input month crit val;
   datalines;
1 2 3
4 5 6
9 9 9
10 10 10
;
run;

Le second data set YEAR_2007_EXTRA contient des informations à ajouter au premier data set. Il est composé de :

  • 5 observations : certaines lignes d’observations du premier data set sont présentes mais pas toutes. Il y a aussi des lignes d’observations en plus. Parfois la valeur de la variable MONTH est identique mais par forcément celle des autres variables.
  • 4 variables numériques : il y a les variables déjà présentes auparavant et une nouvelle variable.
data year_2007_extra;
   input month crit val val2;
   datalines;
1 2 3 4
1 4 5 6
7 8 9 10
9 9 . 9
10 10 .A 10
;
run;

2. Choisir une ou plusieurs variable clés

Avec l’instruction UPDATE, il faut définir une liste de variables clés. Lorsque la combinaison est présente dans les deux fichiers, les autres variables sont mises à jour. Sinon, une nouvelle ligne d’observations est ajoutée.

Ici, je choisis de désigner une ligne avec la variable MONTH et seulement la variable MONTH. Lorsque la variable MONTH du premier et du second data sets coïncident, les autres observations sont mises à jour en se servant du deuxième fichier (YEAR_2007_EXTRA).

data year_2007_frst;
   update year_2007_frst
          year_2007_extra;
   by month;
run;

Ajouter de nouvelles observations : Avec l’exemple de l’article, la ligne où MONTH = 7 n’est pas présente dans le premier data set. Elle est ajoutée.

Ajouter de nouvelles variables : La variable VAL2 est également nouvelle et ajoutée.

3. Une seule ligne d’observation par clé dans le fichier additionnel

Lorsque le fichier additionnel (WEAR_2007_EXTRA) contient plusieurs observations, seule une est gardée. Il est donc préférable d’avoir un fichier avec une seule ligne d’observation par variable clé.

Dans notre exemple, le fichier servant pour la mise à jour a deux lignes d’observations avec MONTH égales à 1. SAS utilisera, dans un premier temps, la première pour mettre à jour le fichier. Puis réécrira dessus avec la seconde ligne d’observation.

  • Avant :MONTH=1, CRIT=2, VAL=3
  • Après : MONTH=1, CRIT=4, VAL=5 et VAL2=6.

4. Ignorer les valeurs manquantes du fichier de mise à jour

Si dans votre fichier de mise à jour il y a des valeurs manquantes alors que dans le fichier d’origine ce n’était pas le cas, SAS n’effacera pas la valeur sauf si la nouvelle valeur est une valeur manquante particulière (special missing).

Dans notre exemple,

  • quand MONTH=9, VAL=9 avant et après, même si dans le data set additionnel, VAL était manquant (symbole point).
  • quand MONTH=10, VAL=10 avant et VAL=.A après, car la nouvelle valeur est une valeur qualifiée par SAS de valeur manquante spéciale.

Au final le nouveau fichier YEAR_2007_FRST, auquel un autre nom aurait pu être donné, se présente ainsi :

month crit val val2
  1     4   5    6
  4     5   6    .
  7     8   9   10
  9     9   9    9
  10   10  .A   10

5. Avoir une seule ligne par BY variable dans le fichier à mettre à jour

Après avoir noté que SAS ne remplace pas les valeurs existantes par des valeurs manquantes, je tenais à souligner une seconde particularité du UPDATE. SAS estime que la variable clé devrait identifier de manière unique une ligne d’observations dans le fichier à mettre à jour.

Dans notre exemple, SAS que la variable clé est MONTH. Il estime que chaque valeur de MONTH se doit d’être unique dans le fichier à actualiser (YEAR_2007_FRST).

Je vais donc ajouter une ligne pour que MONTH=1 apparaisse deux fois et voir la gestion qu’en fait SAS.

data year_2007_frst;
   input month crit val;
   datalines;
1 2 3
1 9 9
4 5 6
9 9 9
10 10 10
;
run;

Si ce n’est pas le cas deux choses se passe :

  • D’une part, un WARNING apparaît dans la log.
  • D’autre part, parmi les lignes ayant les mêmes valeurs clés, seule la première ligne sera actualisée.

Ici, la log contiendra le WARNING suivant :

  • WARNING: The MASTER data set contains more than one observation for a  BY group.

Et notre fichier final, lorsque la variable MONTH =1, seule aura

month crit val val2
  1     4   5    6
  1     9   9    .
  4     5   6    .
  7     8   9   10
  9     9   9    9
  10   10  .A   10

En résumé, avec une instruction UPDATE, il est important de garder à l’esprit trois notions :

  • les valeurs manquantes simples n’effacent pas les données d’origine.
  • le data set avec les données actualisées contiendra une seule ligne d’observation par variable clé et des conséquences si ce n’est pas le cas.
  • le data set à actualiser doit contenir une seule ligne d’observation par variable clé et ainsi respecter la définition de la syntaxe.

Vous trouverez dans la documentation en ligne une page sur UPDATE Statement pour compléter votre lecture.

h1

Penser conditionnel (1/3) : La base du IF

juin 19, 2008

Selon que des variables aient certaines valeurs ou non, le programmeur peut décider de créer une nouvelle variable, extraire une ligne d’observation, etc.

SAS propose plusieurs syntaxes pour exprimer ces conditions.

  • Dans le data step et la procédure SQL, pour extraire un sous ensemble de records sans autre action le WHERE est probablement le plus adapté. De plus, dans d’autres cas que le data step et la PROC SQL l’option WHERE est aussi utilisable (PROC SORT, PROC FREQ, ODS OUTPUT…).
  • Sinon, dans un data step, on rencontre le IF et le SELECT et dans une procédure SQL, CASE WHEN est disponible.

Ce sujet sera divisé en 3 articles à commencer par la syntaxe du IF. Dans huit jours, le prochain rendez-vous sera consacré au SELECT. Enfin le dernier article de la série s’intéressera au CASE WHEN.

1. Le minimum ou presque

« S’il pleut, alors je prend mon parapluie, sinon, je le laisse au bureau. » Dans cette phrase, on repère trois mots : si, alors, sinon. Traduisez par IF, THEN, ELSE. C’est trois mots, version anglaise, forme la syntaxe de base.

Dans l’exemple suivant, on considère les variables AGE et SEX pour créer la variable PP_NY (per protocol population, no/yes) : « Si ma variable âge est supérieure à 13 et qu’il s’agit d’hommes alors ma variable pp_ny=1, sinon pp_ny=0. »

data class;
set sashelp.class;
if age > 13 and sex=‘M’ then pp_ny=1;
else pp_ny=0;
run;

On remarquera l’usage de l’instruction finale ELSE pour inclure tous les cas non pris en compte précédemment.

2. Multiplier les combinaisons

Dans ce second exemple, une instruction ELSE IF a été ajoutée. Ainsi tous les hommes de 13 ans ou moins pour lesquels on connaît l’âge sont sélectionnés dans cette seconde instruction. Enfin, les valeurs restantes correspondent aux lignes d’observations où l’âge est manquant ou concernant les femmes.

data class;
set sashelp.class;
if age > 13 and sex=‘M’ then pp_ny=1;
else if age > .z and sex=‘M’ then pp_ny=0;
else pp_ny=.;
run;

 

ELSE IF : il est préférable d’utiliser le ELSE IF, plutôt que le IF pour des raisons de performance et pour éviter des erreurs d’étourderie.

  • Par performance j’entends : seules les observations qui ne sont pas valides dans la première condition sont lues pour évaluer la condition suivante. C’est un temps très précieux quand on traite une grosse base de données.
  • Par erreur j’entends : en aucun cas, des observations peuvent-être sélectionnées par deux instructions. Ainsi si PP_NY=1, il n’y a aucune chance qu’il devienne PP_NY=0 après exécution de la seconde instruction.

Important : dans l’exemple précédent, j’ai volontairement choisi de lister plus d’une variable pour définir ma condition. En effet, si vous avez une seule variable en entrée et une seule variable en sortie, un informat suffit. Plusieurs avantages se cachent derrière :

  • le programme est allégé
  • l’accès aux valeurs est plus évident puisque les formats font partie des informations données en début de programme.

Voici ce que cela donnerait si on ne considérerait que la variable AGE pour définir la variable PP_NY.

proc format;
   invalue age_pp
   ._.z    = .
low-13   = 0
   13
<-high = 1;
run;

data class;
   set sashelp.class;
pp_ny=input(age,age_pp.);
run;

3. Parenthèse sur les valeurs manquantes 

On a fait très attention de ne pas inclure les âges manquants pour définir PP_NY=1/0. La valeur .z est une valeur manquante spéciale « special missing ». SAS en compte 27.

L’intérêt des valeurs manquantes spéciales : le but des special missings est d’offrir d’un éventail de valeurs pour distinguer les valeurs manquantes. Prenez le cas d’une variable indiquant le contraceptif médicamenteux pris par le patient. S’il s’agit d’une femme et que l’information n’est pas fournie, on mettra manquant (un point). Par contre, s’il s’agit d’un homme, on marquera .A pour « non applicable ». Un format permettra ensuite de représenter . par MISSING et .A par N/A.

L’ordre des valeurs manquantes : l’ordre des missings et special missings est important à connaître. Cela vous expliquera pourquoi j’ai utiliser .z et non . dans l’exemple précédent. Vous pouvez vous reporter à la Online Doc : Missing Values. En résumé cela donne :

  • ._ pour le plus petit,
  • . juste après,
  • .A
  • .Z pour le plus grand des special missings
  • valeurs négatives
  • valeurs positives

Alternative avec la fonction MISSING : sachez qu’une autre solution pour exclure toutes les valeurs manquantes (missing et special missing), c’est d’utiliser la fonction MISSING qui a pour autre avantage de s’appliquer autant aux valeurs textes qu’aux valeurs numériques. C’est très pratique quand on ne connaît pas à l’avance le type de la variable. Dans la PROC SQL, WHERE… il y a aussi « WHERE x IS MISSING ».

4. Plusieurs actions quand une condition est remplie (DO-END)

Si une condition est remplie, il peut s’avérer nécessaire de faire plusieurs choses. Par exemple, on peut à la fois créer une nouvelle variable et sortir la ligne d’observations.

Dans l’exemple ci-dessous, la variable SEX ne prend que les valeurs ‘M’ et ‘F’. Dans ce cas précis, au final, il y a plus de records à la fin. Tout d’abord, tous les records sont extraits et POP est défini comme étant égal à 1. Ensuite, pour les records masculins, les records sont sortis une deuxième fois et notre variable POP est alors égale à 2.

data class;
set sashelp.class;
pop=1;
output;
if sex=‘M’ then
do;
pop=2;
output;
end;
run;

h1

Repérer les 1ers/derniers records (FIRST/LAST)

mai 6, 2008

Repérer la première et/ou la dernière observation d’un jeu de données ou d’un sous-ensemble de ce jeu, c’est possible sous SAS avec les mots-clés FIRST et LAST dans un data step. On se sert de cette information sous forme de condition. Si la première observation est rencontrée, on fait ceci, sinon on fait cela. Cela sert pour créer une variable compteur ou pour générer plusieurs programmes via un DATA _NULL_, programmes variant par quelques valeurs listées dans un fichier de référence.

1. Le raisonnement FIRST/LAST en langage humain

Dans l’exemple ci-dessous, on a tout d’abord deux variables MEMNAME et NAME qui sont triées. Ensuite sont ajoutées plusieurs variables.

Les variables FRST_DSN/LST_DSN

  • S’il s’agit de la première fois que l’on lit la valeur de la variable MEMNAME, alors on donne une value de 1 à FRST_DSN, sinon on donne une valeur de 0.
  • Si au contraire, il s’agit de la dernière valeur avant de changer, LST_DSN prend la valeur 1, sinon il prend la valeur 0.

Dans l’exemple, on remarque que FRST_DSN et LST_DSN sont toutes les deux égale à 1 quand MEMNAME=DSN2, car il n’y a qu’une observation pour ce MEMNAME. La première observation est donc également la dernière,

memname  name  frst_dsn lst_dsn frst_var lst_var
    dsn1       var1          1          0           1          0
    dsn1       var1          0          0           0          0
    dsn1       var1          0          0           0          1
    dsn1       var2          0          0           1          1
    dsn1       var3          0          1           1          1    
    dsn2       var1          1          1           1          1    

    dsn3       var1          1          0           1          1
    dsn3       var2          0          0           1          1
    dsn3       var3          0          0           1          1
    dsn3       var4          0          1           1          1    
    dsn4       var1          1          0           1          1
    dsn4       var2          0          1           1          1       

FRST_VAR/LST_VAR : une fois dans un groupe (DSN1, DSN2, DSN3 ou DSN4), on regarde la seconde variable NAME.

  • Si on a la première fois la valeur dans ce groupe, FRST_VAR=1 sinon FRST_VAR=0.
  • Si au contraire, il s’agit de la dernière fois qu’on l’observe dans ce group, LST_VAR=1, 0 autrement.

Dans l’exemple, seul le DSN1 a plusieurs fois une VAR1 associée. C’est donc le seul moment où FRST_VAR n’est pas égal à LST_VAR.

NOTE, choix de l’auteur : entendez FRST pour rappeler le mot FIRST (premier), LST le mot LAST (dernier) et DSN le mot DATA SET NAME (nom du jeu de données).

2. Le raisonnement FIRST/LAST en langage SAS

SAS lie les données d’un jeu de données ligne par ligne. On rassemble les données par groupe en les triant. On rappelle cet ordre avec une instruction BY.

Ici les variables MEMNAME et NAME sont extraites de la bibliothèque SASHELP grâce au dictionnaire COLUMN.

proc sql;
   create table lst_dsn_var as
   select memname, name
   from dictionary.columns
   where upcase(libname)=’SASHELP’;
quit;

Puis, chacune des variables FRST_DSN, LST_DSN, FRST_VAR et LST_VAR sont crées. Ces variables prennent une valeur de 1, si la condition est vrai (s’il s’agit bien de la première ou de la dernière observation), 0 sinon. Bien sûr, on peut choisir de leur donner la valeur que l’on veut.

data _null_;
   set lst_dsn_var;
   by memname name;
   if first.memname then frst_dsn=1;
   else frst_dsn=0;
   if last.memname then lst_dsn=1;
   else lst_dsn=0;
   if first.name then frst_var=1;
   else frst_var=0;
   if last.name then lst_var=1;
   else lst_var=0;
run;

NOTE : SAS se base sur les données d’origine pour dire si oui ou non, il s’agit de la première/dernière observation. Dès lors, si le jeu d’origine est altéré (suppression de lignes), SAS ne redéfinira pas une première/dernière observation parmi celles restantes. On peut donc ne plus avoir l’observation considérée par SAS comme première/dernière. Il choisira si besoin de faire les deux opérations dans des data steps distincts.

3. La première et la dernière observation d’un data set

Vous n’aurez pas toujours une variable prenant la même valeur pour toutes les observations et ainsi retrouver la première et la dernière observation. On peut soit en créer une avec un RETAIN par exemple ou plus simplement utiliser

  • la variable automatique _N_ pour la première observation et
  • la variable assignée avec l’option END= dans l’instruction SET pour la dernière observation.

data _null_;
   set lst_dsn_var end=eof;
   if _N_=1 then …;
   if eof then…;
run;

NOTE : Par habitude, on donne ici le nom EOF (End Of File) comme nom à la variable qui prend une valeur 1 s’il s’agit de la dernière observation, 0 autrement. Comme la variable automatique _N_, EOF n’apparaît pas dans le data set final, s’il est créé.