Archive for the ‘proc univariate’ Category

h1

Je garde ou je jette? les variables

août 25, 2008

Pour garder ou supprimer sous SAS des variables, il y a les mots-clés KEEP (garder) et DROP (enlever). Sélectionner les variables nécessaires par la suite et seulement celles-ci est très important. Cela fait partie des outils pour améliorer la performance d’un programme tant en terme de temps d’exécution que le volume demandé pour stocker les data sets. Voici plus en détails, et avec des exemples, l’utilisation de ce vocabulaire qui s’applique au data step, aux procédures et à la syntaxe de l’ODS OUTPUT.

1. L’option dans un data step

Les mots KEEP et DROP servent principalement en tant qu’option appliquée à un data set donné. Elles sont alors listées juste après le nom du data set entre parenthèses et sont suivies du signe égal :

  • Keep= Data Set Option : nom_du_dataset (keep=nom_var1 nom_var2 etc)
  • Drop= Data Set Option : nom_du_dataset (drop=nom_var1 nom_var2 etc)

Exemple 1 : une instruction SET

data class (drop=weight: height:);
   set sashelp.class (keep=name weight height);
   weight_kg = weight*0.45359237;
   height_m  = height*0.0254;
   bmi       = weight_kg/height_m**2;
run;

Dans le cas présent, les variables NAME (nom), WEIGHT (poids) et HEIGHT (taille) sont lues dans le fichier d’origine SASHELP.CLASS et gardées. De nouvelles variables sont calculées pour avoir un poids en kilogramme (WIEGHT_KG) et une taille en mètres (HEIGHT_M). A partir du poids et de la taille, l’indicateur de masse corporelle (BMI) est calculé. Les variables, dont le nom commence par WEIGHT et HEIGHT, ne sont plus nécessaires par la suite. Elles sont donc supprimée dans le data set final appelé CLASS.

Soit le mot KEEP, soit le mot DROP est donné en option mais pas les deux afin d’éviter les confusions. Le choix entre KEEP et DROP dépend souvent du nombre de variables à lister par la suite. C’est donc un choix purement pratique.

Note, Indice de masse corporelle : L’indice de masse corporel (Body Mass Index, BMI) est égal au poids divisé par la taille au carré (poids/taille2). Le site de l’Organisation Mondiale de la Santé (World Health Organisation, WHO) donne des précisions sur le sujet.

Note, Conversion des unités de mesures (source Wikipedia) : je suppose que la taille donnée dans le fichier SASHELP.CLASS est exprimée en pouces (inches) et que le poids est exprimé en livres (pounds). Sachant qu’un pouce est égal à 2,54 cm et qu’une livre est égale à 0,45359237 kg, les tailles et poids du premier exemple ont pu être convertis en mètres et kilos.

Exemple 2 : une instruction MERGE

data age_ae;
   merge ae      (in=ref keep=name ae_id ae_sev)
         patient (keep=name age);
   by name;
   if ref;
run;

Dans ce second exemple, les patients ayant eu un effet secondaire (adverse event, AE) sont enregistrés dans le data set AE. Chaque effet secondaire est identifié de manière unique par les variables NAME et AE_ID. La sévérité de l’effet secondaire nous intéresse dans le data set AE.

A cette information, est ajouté l’âge du patient disponible dans la variable AGE du data set PATIENT.

La variable commune aux deux data sets est NAME. Il faut donc qu’elle reste dans les deux data sets. Seuls les patients ayant eu un effet secondaire sont sélectionnés grâce à l’option IN.

Pour tester l’exemple, vous trouverez en fin d’article un code créant les fichiers PATIENT et AE.

NOTE : Une variable utilisée par une autre option du data set comme RENAME ou WHERE ne pourra pas être supprimée au même moment.

2. Quelques exemples de procédures

Dans une procédure, elles suivent le nom du data set d’entrée et/ou du data set de sortie. Aucun autre mot ne doit être inséré entre le nom du data set et les options entre parenthèses.

  • proc sort data=… () out=…();
  • proc print data=… () width=min;
  • proc transpose data=…() out=…() prefix=visit;
  • proc freq data=…();
  • proc report data=…() split=’#’;
  • proc tabulate data=…()
  • proc gplot data=…()
  • proc boxplot data=…()
  • proc univariate data=…()
  • proc ttest data=…()
  • etc.

La procédure SQL liste les variables à garder après le mot SELECT. Il n’y a pas à ce stade d’option pour supprimer les variables. Par contre, on peut affiner la sélection après que le data set final soit créé. Bien sûr, le temps de lecture est augmenté puisque toutes les variables sont lues pour créer le data set et non un sous-ensemble.

proc sql;
   create table test (drop=ae_sdt ae_edt) as
      select a.*, age
      from ae a
      left join
           patient b
      on a.name=b.name;
quit;

NOTE : L’option WHERE est très pratique lorsqu’on en peut faire une sélection que sur le résultat de la fusion.

proc sql;
   create table test (where=(ae_sev=1 or age=12)) as
      select a.*, age
      from (select name, ae_id, ae_sev
            from ae) a
      left join
           (select name, age
            from patient) b
      on a.name=b.name;
quit;

3. L’option dans l’ODS OUTPUT

Les sorties générées par une procédure sont redirigeables vers un data set via l’instruction ODS OUTPUT. Le nom de la sortie est alors suivi du signe égal et du nom du data set de destination. Après ce nom les options sont ajoutables.

ods exclude all;
ods output onewayfreqs=exemple_ods (keep=age frequency percent);
proc freq data=sashelp.class;
   table age;
run;
ods output clear;
ods exclude none;

Deux articles sur l’ODS OUTPUT sont déjà à votre disposition

4. Les instructions KEEP et DROP dans un data step

En plus des options KEEP et DROP, il existe les instructions KEEP (KEEP Statement) et DROP (Drop Statement) pouvant être exécutées dans un data step. L’important ici est de se souvenir que l’instruction s’applique à la fin du data step, une fois que le data set final est créé. Ainsi il n’est pas possible de supprimer une variable en milieu de programme pour ensuite créer une autre variable du même nom.

data class (drop=i);
   do i=0 to 3;
      output;
   end;
   do i=10 to 12;
      output;
   end;
run;

data class;
   do i=0 to 3;
      output;
   end;
   drop i;
   do i=10 to 12;
      output;
   end;
run;

Les deux exemples ci-dessus font le même travail. La variable I n’apparaîtra pas dans le data set final car elle est supprimée en fin de programme.

Lectures complémentaires : Outre les options KEEP et DROP, le programmeur utilisera souvent les options RENAME et WHERE et de temps en temps les options FIRSTOBS et OBS. Pour une liste complète des options, consultez la documentation en ligne : SAS Data Set Option.

Après savoir comment supprimer les variables et donc les colonnes d’un data set SAS, vous serez peut-être intéressé de savoir comment supprimer ou garder certaines lignes d’un data set avec les mots-clés DELETE (DELETE Statement) et OUTPUT (OUTPUT Statement).

Annexe : Créer les data sets PATIENT et AE pour tester l’exemple avec MERGE.

data patient;
   set sashelp.class;
run;

data ae;
   set sashelp.class (keep=name);
   if name=‘Thomas’ then
      do;
         ae_id  = 1;
         ae_sdt = ’21MAR2007’d;
         ae_edt = ’28APR2007’d;
         ae_sev = 3;
         output;
         ae_id  = 2;
         ae_sdt = ’03JUN2007’d;
         ae_edt = ’19JUN2007’d;
         ae_sev = 1;
         output;
      end;
run;

h1

Mes valeurs sont t’elles proches de la moyenne ? (écart-type)

juin 17, 2008

Pour résumer une série de mesures, il est courant de proposer la moyenne. Mais avoir une moyenne de 11 n’a pas le même sens selon que les valeurs soient dispersées entre 10 et 13, ou entre 0 et 20. Dans le premier cas, toutes les valeurs sont plus proches de la moyenne que dans le second cas. L’écart-type (ou standard deviation en anglais) reflète cette subtilité. Le statisticien aura pour rôle d’interpréter cette valeur. En comprenant le sens d’un écart-type,  le programmeur trouvera un outil supplémentaire pour vérifier la cohérence de ses résultats.

1. Des variables continues

La moyenne et l’écart-type sont des outils s’appliquant uniquement aux données numériques, suivant un ordre donné où l’écart entre chacune des valeurs potentielles est toujours le même. On peut donc parler de valeurs continues au sens large du terme.

Ainsi, l’âge d’une personne est une donnée continue qu’elle soit arrondie en années, en mois, en jours, en heure. La moyenne et l’écart-type auront une précision similaire.

2. Définition l’écart-type d’une population

L’écart-type ayant pour but de chiffrer l’écart entre les valeurs  et la moyenne. Il est donc logique de calculer la différence entre chaque valeur et la moyenne. Dans un premier temps, on a autant de différences que de valeurs. Dans un second temps, une valeur moyenne est extraite de ces différences.

1. Mettre au carré les différences : qui dit moyenne, dit somme des valeurs divisé par le nombre de valeur. Hors, la somme de valeurs positives et négatives s’annulent. Et dans notre cas, on a bien des valeurs inférieures et des valeurs supérieures à la moyenne. Dans le cas de l’écart-type, toutes les différences sont rendues positives en les multipliant par elles-mêmes (mises au carré).

C’est probablement pour des faciliter la résolution de calculs mathématiques que la mise au carré est préféré à la prise des valeurs absolu. Si vous avez une autre hypothèse, n’hésitez pas à en faire part.

2. Extraire la moyenne : on souhaite une moyenne. Donc la somme des différences (mises au carré) sont divisées par le nombre de différences. Si on s’arrête là, la statistique s’appelle la variance.

3. Exprimer la dispersion dans la même unité que la moyenne : A présent la somme des différences n’est plus dans la même unité que la moyenne. Pour parler dans la même unité, on prend la racine de l’ensemble du calcul.

3. Estimer l’écart-type d’une population à partir d’un échantillon

Contexte : il est fréquent de ne pas travailler sur la population qui nous intéresse mais sur un échantillon. Par exemple, si on mesure la pression artérielle systolique des patients d’une étude clinique pour savoir si la drogue a permis de la réduire, le statisticien n’est pas intéressé par la moyenne de ces patients mais bien celle de tous les personnes pouvant à l’avenir faire appel à cette drogue.

Le problème : De plus, les recherches statistiques ont permis de démontrer qu’en moyenne, la moyenne de tous les échantillons possibles est la même que celle de la population. Pour l’écart-type, c’est un peu moins simple, puisqu’il la moyenne des écarts-types de tous les échantillons n’est pas exactement égale à celle de la population.

La solution : Mais les chercheurs en statistique sont là ! Ils ont réussi à montrer qu’en enlevant 1 au nombre total de valeurs dans chacun des échantillons, on pouvait retrouver l’écart-type de la population (cf. des cours d’inférence qui semble si théorique au prime abord mais qui permettent d’accéder à l’arrière de la scène).

Vocabulaire : Et pour enrichir votre vocabulaire et surtout comprendre ces spécialistes sachez que si l’écart-type sera appelé un estimateur biaisé si le 1 n’est pas enlevé.

L’écart-type le plus utilisé est donc le second, celui où on divise les différences non pas par le nombre de différences mais le nombre de différences moins 1.

4. Comprendre la différence entre l’écart-type et l’erreur-type

Pour ceux qui auront une formation à composante statistique, vous pourrez être amené à expliquer en entretien ou à vos collègues la différence entre l’écart-type (standard deviation) et l’erreur-type (standard error). 

La première différence, c’est que l’écart-type s’applique à des données, alors que l’erreur-type s’applique à la statistique de la moyenne. 

A chaque fois, qu’un échantillon est pris, sa moyenne va servir à estimer la moyenne de la population. Bien-sûr, toutes les moyennes des échantillons ne sont pas identiques. Il existe une variabilité. Certains sont plus proches de la réalité que d’autre. Cette variabilité des résultats entre les échantillons est donnée par l’erreur-type. Ainsi un intervalle à l’intérieur duquel la moyenne de la population se tient pourra être estimé.

5. En langage mathématique, l’écart-type donne quoi ?

Pour désigner nos valeurs, le mathématicien utilise la lettre X.

  • Xi représente la ième valeur de l’échantillon. Si on a 15 valeurs alors i prend les valeurs de 1 à 15 ou plus généralement les valeurs de 1 à n.
  • La moyenne de ces Xi est symbolisée par un X avec une barre au dessus.

Pour calculer l’écart-type, on a parlé de trois étapes :

  1. sum(Xi-Xbar)2 Tout d’abord la différence entre chaque Xi et la moyenne X barre est calculée. Elles sont mises au carré. Puis, la somme de ces valeurs en est faite. On en profite pour préciser que les valeurs de i vont de 1 à n.
  2. sum(Xi-Xbar)2 / (n-1) Après, il s’agit de calculer la moyenne de ces valeurs
  3. racine(sum(Xi-Xbar)2 / (n-1)) Enfin, la statistique est convertie en une unité comparable à celle de la moyenne via la racine carré.

6. Et en langage SAS, comment trouver la valeur d’un écart-type ?

Dans tous les cas suivant, le dénominateur est n-1.

6.1 Fonction STD : La fonction STD (standard deviation) retourne la valeur de l’écart-type.

proc sql;
   select std(age) as std_age
   from sashelp.class;
quit;

6.2 Calcul manuel : dans un premier temps, la différence avec l’âge moyen est calculée pour chaque record. Chaque différence est mise au carré. Dans un deuxième temps, la somme de ces différences est divisée par le nombre de records moins 1. Enfin, la racine carrée du tout est prise.

proc sql;
   create table step1 as
      select (age-mean(age))**2 as step1
      from sashelp.class;
   select sqrt(sum(step1)/(count(*)-1)) as step2_3
      from step1;
quit;

6.3 Les procédures PROC MEANS et PROC SUMMARY : dans les exemples ci-dessous, j’ai volontairement choisi l’instruction ODS OUTPUT pour extraire les statistiques dans un data set.

proc means data=sashelp.class;
var age;
ods output Summary=proc_means;
run;

proc summary data=sashelp.class print;
   var age;
   ods output Summary=proc_summary;
run;

6.4 La procédure PROC UNIVARIATE : deux sorties fournies par la procédure UNIVARIATE sont indifféremment disponible.

proc univariate data=sashelp.class;
   var age;
   ods output Moments=proc_univ_opt1;
   ods output BasicMeasures=proc_univ_opt2;
run;